Contents

Theoretical and Mathematical Physics


Vol. 224, No. 1, 2025


Research Articles

Self-distributive algebras and bialgebras

V. G. Bardakov, T. A. Kozlovskaya, and D. V. Talalaev p. 1103  abstract

Error estimates of the Galerkin method for a weakly solvable parabolic equation with a nonlocal-in-time condition for the solution

A. S. Bondarev, A. A. Petrova, and O. M. Pirovskikh p. 1119  abstract

Irregular dynamics of internal waves in a weakly stratified fluid in the viscous Benjamin–Ono equation model

M. V. Flamarion, and E. Pelinovsky p. 1126  abstract

Integral networks of nonlinear oscillators

S. D. Glyzin, and A. Yu. Kolesov p. 1136  abstract

From NLS-type matrix refactorization problems to set-theoretic solutions of the 2- and 3-simplex equations

S. Konstantinou-Rizos p. 1154  abstract

Constructing a solution of an initial boundary value problem for a functional-differential equation arising in mechanics of discrete-distributed systems

E. P. Kubyshkin, and V. D. Romanov p. 1167  abstract

Periodic traveling waves in a nonlocal erosion equation

A. N. Kulikov, and D. A. Kulikov p. 1180  abstract

Modular-type nonlinearity in the modeling of tumor spheroid growth

N. T. Levashova, E. A. Generalov, A. E. Sidorova, and A. N. Goltsov p. 1202  abstract

Using the Kantorovich–Galerkin approach to analyze the resonant characteristics of damped systems

V. L. Litvinov, and K. V. Litvinova p. 1211  abstract

Nonlocality, integrability, and solitons

Wen-Xiu Ma p. 1220  abstract

The elliptic lattice KdV system revisited

F. W. Nijhoff, C. Zhang, and D.-J. Zhang p. 1234  abstract

Front motion in the reaction–diffusion problem in the case of a balance between reaction and diffusion

A. O. Orlov, and A. R. Makhmudov p. 1257  abstract

Dynamics of the boundary map of a system with spherical noise

O. V. Pochinka, and A. A. Yagilev p. 1271  abstract

Localized structures in a saturable discrete NLS equation with next-nearest-neighbor interactions

V. M. Rothos p. 1280  abstract

Derivative forms of the three-component nonlinear Schrödinger equation and their simplest solutions

A. O. Smirnov, and M. M. Prikhod’ko p. 1295  abstract