

Vapor-Phase Oxidation of β -Picoline to Nicotinic Acid on V_2O_5 and Modified Vanadium Oxide Catalysts

**P. B. Vorobyev, L. I. Saurambaeva, T. P. Mikhailovskaya, O. K. Yugay,
A. P. Serebryanskaya, and I. A. Shlygina**

*Bekturov Institute of Chemical Sciences, ul. Ualikhanova 106, Almaty, 050010 Kazakhstan
e-mail: pavel.vr@mail.ru*

Received March 14, 2014

Abstract—Modification of V_2O_5 with Ti, Sn, Zr, Nb, and Al oxides improves the activity and selectivity of the vanadium oxide catalyst in vapor-phase oxidation of β -picoline to give nicotinic acid. It is shown that the conversion of β -picoline and the yield of nicotinic acid on two-component V_2O_5 – TiO_2 , V_2O_5 – SnO_2 , V_2O_5 – ZrO_2 , V_2O_5 – Nb_2O_5 , and V_2O_5 – Al_2O_3 catalysts may be several times those on the V_2O_5 catalyst. It was found that, on passing from V_2O_5 to double-component vanadium-containing catalysts, the proton affinity of active oxygen bonded to vanadium, calculated by the quantum-chemical method, grows simultaneously with the increase in the activity of the catalysts in the oxidation reaction.

DOI: 10.1134/S1070427214070076