

Optimization of Automated Synthesis of 2-[¹⁸F]Fluoro-2-deoxy-D-glucose Involving Base Hydrolysis

N. A. Gomzina, D. A. Vasil'ev, and R. N. Krasikova

Institute of Human Brain, Russian Academy of Sciences, St. Petersburg, Russia

Received February 12, 2002

Abstract - Synthesis of 2-[¹⁸F]fluoro-2-deoxy-D-glucose (^{[18]F}FDG) involving base hydrolysis was optimized. Fluorine-18 was isolated from irradiated water to more than 90% by sorption of [¹⁸F]fluoride on QMA anion-exchange resin, which was followed by elution with a 96 : 4 (by volume) acetonitrile–water mixture containing Kryptofix 2.2.2 and potassium carbonate (molar ratio 2 : 1). This composition is the best for preparing the complex $[K/K2.2.2]^{+18}F^-$ used in nucleophilic fluorinations. No additional azeotropic drying is required. Base hydrolysis under optimized conditions (40–45°C), followed by neutralization with HCl, removal of traces of the solvent, and purification of the final product on a combined SCX/Alumina N column, yielded ^{[18]F}FDG of high radiochemical (>99%) and chemical purity with minimal product loss. With an RB-86 robotic system (Anatech, Sweden), the synthesis time was 38 min. The procedure is used in the Institute of Human Brain, Russian Academy of Sciences for routine synthesis of FDG; the radiochemical yield of the product by the end of synthesis (EOS) is reproducibly high: $63 \pm 3\%$ ($n = 40$).