

Kinetics and Mechanism of the Electrochemical Reduction of [1,2-Bis(*tert*-butylperoxy)ethyl]benzene under Conditions of the In Situ Recovery of a Platinum Surface

M. D. Vedenyapina^{a, c}, M. Yu. Sharipov^{a, d}, A. O. Terent'ev^{a, d}, A. M. Skundin^b, and A. A. Vedenyapin^{a, c}

^a Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia

^b Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071 Russia

^c Moscow Technological Institute, Moscow, 117292 Russia

^d Mendeleev University of Chemical Technology, Moscow, 125047 Russia

e-mail: mvedenyapina@yandex.ru

Received February 18, 2015

Abstract—The behavior of [1,2-bis(*tert*-butylperoxy)ethyl]benzene (**I**) on Pt electrode is studied by means of cyclic voltammetry (CVA). A comparison of the electrochemical properties of **I** and the properties of previously studied bridge-type 1,2,4,5-tetraoxane ((1,4)-1,4-dimethyl-7-(4-methylbenzyl)-2,3,5,6-tetraoxabicyclo[2.2.1]heptane) (**II**) shows that the biperoxide studied in this work is reduced on a Pt electrode at lower cathodic potentials and is resistant to electrooxidation.

Keywords: peroxides, tetraoxanes, electrooxidation, electroreduction, cyclic voltammetry.

DOI: 10.1134/S0036024416020333