

C-PCM Based Calculation of Energy Profiles for Proton Transfer in Phosphorus-Containing Acid–N,N-Dimethylformamide Complexes

I. V. Fedorova, E. A. Khatuntseva, M. A. Krest'yaninov, and L. P. Safonova

Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, 153045 Russia

e-mail: fiv@isc-ras.ru

Received May 12, 2015

Abstract—Proton transfer along the hydrogen bond in complexes of DMF with H_3PO_4 , H_3PO_3 , $\text{CH}_3\text{H}_2\text{PO}_3$, and their dimers has been investigated by the B3LYP/6-31++G** method in combination with the C-PCM model. When the $\text{O}_{\text{acid}}\cdots\text{O}_{\text{DMF}}$ distance (R) in the scanning procedure is not fixed, the energy profile in all cases has a single well. When this distance is fixed, there can be a proton transfer in all of the complexes in the gas phase at $R > 2.6 \text{ \AA}$; if solvation is taken into account, proton transfer can take place at $R > 2.4 \text{ \AA}$ ($R > 2.5 \text{ \AA}$ for DMF complexes with $\text{CH}_3\text{H}_2\text{PO}_3$ and its dimer). The height of the energy barrier to proton transfer increases with increasing R . Proton transfer is energetically most favorable in the DMF–phosphoric acid complexes. The structural and energetic characteristics of the hydrogen-bonded complexes calculated on the basis of the solvation model are compared with the same parameters for the complexes in the gas phase.

Keywords: phosphoric acid, phosphonic acid, methylphosphonic acid, DMF, hydrogen bond, proton transfer, quantum chemical calculation, C-PCM model.

DOI: 10.1134/S003602441602014X