

Maximizing the Solar Energy Storage of the Four Substituted Norbornadiene-Quadricyclane System: DFT Calculations¹

Esmail Vessally* and Soma Aryana

Laboratory of Theoretical Organic Chemistry, Department of Chemistry, Payame Noor University, Tehran, Iran

*e-mail: vessally@yahoo.com

Received November 19, 2014

Abstract—The purpose of this research is to study the solar energy storage in norbornadiene (**1**)/quadricyclane (**2**) system by four direct attachments of substituents at two carbon atoms on both sides of the double bonds $C_2=C_3$ and $C_5=C_6$ in **1_X** and **2_X**; calculating the relative energies at B3LYP/6-311++G** level of theory. The solar energy storage of four electron donating substituents, (push-push effect), X (X = $-\text{NH}_2$, $-\text{OH}$) and four electron withdrawing substituents, (pull-pull effect) X (X = $-\text{CO}_2\text{H}$, $-\text{CONH}_2$, $-\text{NO}_2$ and CN) were examined. The solar absorption bands were calculated for **1_X**. The DFT calculations reveal that the bands were shifted to the visible spectrum region when the electron withdrawing substituents were used rather than the electron donating substituents.

Keywords: solar energy, norbornadiene, quadricyclane, electronic effects, light absorption, substitution effects.

DOI: 10.1134/S003602441601009X