

Experimental and Theoretical Conformation Analysis of Eight-Membered Silocines with Planar Fragments

Ya. A. Vereshchagina^{a,b}, E. A. Ishmaeva^b, A. A. Gazizova^a, D. V. Chachkov^c,
A. P. Timosheva^d, and N. V. Timosheva^e

^a Kazan State University of Technology, Kazan, Tatarstan, Russia

^b Kazan State University, ul. Kremlevskaya 18, Kazan, 420008 Tatarstan, Russia
eleonora.ishmaeva@ksu.ru

^c Kazan Research Center, Russian Academy of Sciences, Kazan, Tatarstan, Russia

^d Arbuzov Institute of Organic and Physical Chemistry, Kazan Research Center, Russian Academy of Sciences,
ul. Arbuzova 8, Kazan, 420088 Tatarstan, Russia

^e University of Massachusetts, 300 Massachusetts Ave. Amherst, MA 01003 USA

Received April 23, 2009

Abstract—The dipole moments of 6-thia-4,5:6,7-dibenzo-1,3,2-dioxasilocines were determined experimentally and calculated at the DFT B3LYP/6-31G* level of theory and by the additivity scheme. The experimental and theoretical (DFT B3LYP/6-31G*) conformation analysis of eight-membered 1,3,2-dioxasilocines having planar fragments showed that these compounds in solution exist as *boat–chair*, *boat–boat*, or *twist–boat* conformers, depending on the presence of unsaturated planar fragment, nature of the heteroatom in position 6 of the eight-membered ring, and substituents on the silicon atom.

DOI: 10.1134/S1070428010070122