

**MOLECULAR STRUCTURE OF ErCl_3 AND YbCl_3
ACCORDING TO THE DATA OF THE SIMULTANEOUS ELECTRON
DIFFRACTION AND MASS SPECTROMETRIC EXPERIMENT**

**N. I. Giricheva,¹ S. A. Shlykov,² G. V. Girichev,²
E. V. Chernova,¹ and E. A. Lapykina¹**

UDC 539.27: 544.18: 621.384.8: 544.666: 544.668

The saturated vapors of ErCl_3 and YbCl_3 were studied in a simultaneous electron diffraction and mass spectrometric experiment at 1165 K and 1170 K, respectively. In the vapors of these compounds, we found up to 3 mol.% dimers along with the monomers. The parameters of the r_g effective configuration of the monomer molecules were determined. For ErCl_3 and YbCl_3 , the internuclear distances $r_g(\text{Ln}-\text{Cl})$ were 2.436(5) Å and 2.416(5) Å, and the bond angles $\angle_g(\text{Cl}-\text{Ln}-\text{Cl})$ were 117.0(10)° and 117.2(10)°, respectively. The equilibrium configurations and vibration frequencies of the monomer and dimer molecules were calculated by the HF, B3LYP, and MP2 methods using the combination of the ECP_D energy-consistent quasirelativistic core potential, including 4f electrons [$\text{Kr}4d^{10}4f^n$], and the contracted [5s4p3d] valence basis set for Er and Yb atoms and the MIDIX [4s3p1d] basis set for Cl atoms. The parameters of the effective r_g configuration of the monomer molecules corresponding to the temperature of the experiment were calculated. The difference between the calculated equilibrium $r_e(\text{Ln}-\text{Cl})$ and temperature-averaged $r_g(\text{Ln}-\text{Cl})$ distances was found to be 0.001-0.002 Å and did not exceed the error of the $r_g(\text{Ln}-\text{Cl})$ parameter determined in the electron diffraction experiment. The experimental parameters of the r_g structure were shown to be consistent with the idea about the planar equilibrium geometrical configuration of ErCl_3 and YbCl_3 molecules.

Keywords: gas-phase electron diffractometry, mass spectrometry, erbium trichloride, ytterbium trichloride, vapor composition, molecular structure, vibration frequencies, quantum-chemical calculations, anharmonicity of vibrations.