

## CRYSTAL STRUCTURE OF $K_2[Pd(NO_2)_4] \cdot 2H_2O$

**S. A. Gromilov, S. P. Khranenko, I. A. Baidina,  
and N. V. Kuratieva**

UDC 546.98+548.736

The crystal structure of  $K_2[Pd(NO_2)_4] \cdot 2H_2O$  was investigated at 150 K (X8 APEX Bruker automated diffractometer,  $MoK\alpha$  radiation, graphite monochromator, CCD detector,  $\theta/2\theta$  scan mode in the  $\theta$  range from  $3.35^\circ$  to  $31.23^\circ$ , 3280 reflections collected for 1654 independent reflections;  $R = 0.0245$ ),  $a = 6.5087(13)$  Å,  $b = 6.9972(14)$  Å,  $c = 7.1500(14)$  Å,  $\alpha = 118.67(3)^\circ$ ,  $\beta = 101.24(3)^\circ$ ,  $\gamma = 98.11(3)^\circ$ ,  $V = 269.63(9)$  Å<sup>3</sup>, space group  $P\bar{1}$ ,  $Z = 1$ ,  $d_{\text{calc}} = 2.492$  g/cm<sup>3</sup>. The structure is built of  $[Pd(NO_2)_4]^{2-}$ -centrosymmetric complex anions,  $K^+$  cations, and crystallization water molecules. The Pd–N bond lengths are 2.0284(18) Å and 2.052(2) Å,  $\angle N\text{–Pd–N}$  91.20(8)°. It is shown that the single crystal faceting (pseudohexagonal plates) is due to the pseudohexagonal motif of the structure.

**Keywords:** palladium, nitrites, coordination compounds, crystal structure, crystal chemistry.