

**EFFECT OF THE INTRAMOLECULAR HYDROGEN BOND
ON THE ELECTRONIC STRUCTURE OF ORGANIC
MOLECULES WITH A PLANAR QUASICYCLE**

A. N. Pankratov and A. V. Shalabay

UDC 544.142.4:544.163.2:547

The electronic structure of the following organic molecules is studied using the HF/6-311G(*d,p*) method: malonic dialdehyde, acetylacetone, thiomalonic aldehyde, 2-XC₆H₄NH₂ aniline derivatives, 2-XC₆H₄OH phenol derivatives, 2-XC₆H₄SH thiophenol derivatives (X = CHO, COOH, COO⁻, NO, NO₂, OH, OCH₃, SH, SCH₃, F, Cl, Br), 8-hydroxyquinoline, 8-mercaptopquinoline, tropolone. It is found that the intramolecular hydrogen bond (IHB) leads to a local electronic redistribution in the quasi-cycle, and above all to the electron density transfer among the immediate participants of IHB — from the hydrogen atom to the proton-acceptor atom. When the IHB of the S—H···O type forms, the electron density mainly decreases on sulfhydryl hydrogen atom and increases on sulfur atom.

Keywords: intramolecular hydrogen bond, electronic structure, organic molecules with a planar quasi-cycle, *ab initio* quantum chemical study, dipole moment.