

**A STUDY OF THE ELECTRONIC STRUCTURE OF
POLYVINYLSILOXANE ($\text{CH}_2\text{CHSiO}_{1.5}$)_n BY X-RAY
PHOTOELECTRON SPECTROSCOPY AND QUANTUM
CHEMICAL MODELING IN THE DFT APPROXIMATION**

**V. I. Vovna, I. S. Os'mushko, V. V. Korochentsev,
N. P. Shapkin, and M. V. Tutov**

UDC 539.194

The electronic structure of polyvinylsiloxane polymeric chains ($\text{Si}_2\text{O}_3(\text{CHCH}_2)_2$)_n is studied by X-ray photoelectron spectroscopy and quantum chemistry in the DFT approximation. The binding energy of C and O 1s electrons occupying inequivalent positions in the polymer coincides within the experimental accuracy. The binding energies for C and O (284.9 eV and 532.4 eV) and for Si2p-electrons (102.7 eV) well agree with the values for related compounds. The experimental data for the binding energy are reproduced in HF and DFT calculations only with the extended 6-311**(*d*) basis set. The highest occupied levels of the polymer are π orbitals of vinyl groups.

Keywords: polymers, siloxanes, XPS, DFT, electronic structure.