

Mechanism of Electrochemical Oxidation of 1-Chloro-2,2,6,6-tetramethylpiperidine

E. Sh. Kagan^a, V. V. Yanilkin^b, V. I. Morozov^b, N. V. Nastapova^b,
I. Yu. Zhukova^a, I. I. Kashparov^a, and V. P. Kashparova^a

^aSouth-Russian State Technical University (Novocherkassk Polytechnical Institute),
ul. Prosveshcheniya 132, Novocherkassk, 346421 Russia
e-mail: kagan29@mail.ru

^bArbuzov Institute of Organic and Physical Chemistry, Kazan Research Center,
Russian Academy of Sciences, ul. Arbuzova 8, Kazan, 420088 Tatarstan, Russia
e-mail: yan@iopc.knc.ru

Received December 4, 2009

Abstract—In contrast to 2,2,6,6-tetramethylpiperidine and other aliphatic amines, at the electrochemical oxidation of 1-chloro-2,2,6,6-tetramethylpiperidine a sufficiently stable cation-radical is formed. Its formation is confirmed by the data of cyclic voltammetry and electron paramagnetic resonance. Further transformation of the cation-radical leads to the formation of 2,2,6,6-tetramethylpiperidin-1-oxyl.

DOI: 10.1134/S1070363209050235