

Synthesis, Structure, and Keto–Enol Tautomerism of $3\text{-R}^1\text{-5,5-R}^2\text{,R}^2\text{-6-R}^3\text{-2,3,5,6-Tetrahydropyran-2,4-diones}$

V. V. Shchepin*, M. I. Kodess**, Yu. Kh. Sazhneva*, and N. Yu. Russkikh*

* *Perm State University, Perm, Russia*

** *Institute of Organic Synthesis, Ural Division, Russian Academy of Sciences, Yekaterinburg, Russia*

Received July 22, 2004

Abstract—Ethyl esters of 2,4-dibromo-2-R¹-4-R²-3-oxopentanoic and -hexanoic acids react with zinc and aliphatic or aromatic aldehydes under the conditions of the Reformatskii reaction to give 3-R¹-5,5-R²,R²-6-R³-2,3,5,6-tetrahydropyran-2,4-diones, which are obtained in three forms: keto, enol with enolization of the keto group, and enol with enolization of the ester group. The keto form is isolated by crystallization from a mixture of CCl₄ and petroleum ether; the first enol form, from MeOH, EtOH, and polar aprotic solvents; and the second enol form, from CHCl₃. The second enol form is oxidized in DMSO to form a keto compound containing a hydroxy group at the 3-position of the heteroring.