Molecular Structure and Conformational Preferences of Trimethyl Phosphorotrithioite, P(SMe)₃, Evaluated by Gas-Phase Electron Diffraction and Quantum Chemical Calculations

A. V. Belyakov*, A. N. Khramov*, P. E. Baskakova*, and V. A. Naumov**

* St. Petersburg State Technological Institute (Technical University), St. Petersburg, Russia
** Arbuzov Institute of Organic and Physical Chemistry, Kazan Research Center,
Russian Academy of Sciences, Kazan, Tatarstan, Russia

Received June 6, 2004

Abstract—Free P(SMe)₃ molecule was studied by gas electron diffraction (GED) and by B3PW91/6-311+G* (DFT) and MP2/6-31+G* calculations. Each conformer is characterized by three dihedral angles $\tau(\text{CSPl}p)$, where lp denotes the direction of the lone electron lone pair on the P atom. DFT calculations indicate that the most stable conformer is an anti,gauche+,gauche-(ag+g-) conformer of C_s symmetry; the next are the ag+g+ ($\Delta E=2.5$ kJ mol⁻¹), g+g+g+ ($\Delta E=5.2$ kJ mol⁻¹), and aa+g+ ($\Delta E=12.5$ kJ mol⁻¹) conformers. The MP2 calculations give the similar order, with the relative energies of 0.3, 4.3, and 10.6 kJ mol⁻¹, respectively. The experimental GED data agree well with the presence of only two conformers: $\chi(ag+g+)=80(20)\%$ and $\chi(ag+g-)=20(10)\%$.