

Synthesis of Glycosides with 4-(4-Hydroxyphenyl)-1,2,3-thia- and -selenadiazole Aglycones

L. M. Pevzner^{a*}, M. L. Petrova^a, E. B. Erkhitueva^b, V. A. Polukeev^c, and A. V. Stepakov^b

^aSt. Petersburg State Institute of Technology (Technical University), Moskovskii pr. 26, St. Petersburg, 190013 Russia

*e-mail: pevzner_lm@list.ru

^bSt. Petersburg State University, St. Petersburg, Russia

^cInstitute of Experimental Medicine, St. Petersburg, Russia

Received December 13, 2018; revised December 13, 2018; accepted December 20, 2018

Abstract—Glycosylation of 4-(4-hydroxyphenyl)-1,2,3-thia(selena)diazoles with 1- α -bromo-2,3,4,6-tetra-*O*-acetyl-D-glucopyranose, 1- α -bromo-2,3,4,6-tetra-*O*-acetyl-D-galactopyranose, and 1- α -bromo-2,3,5-tri-*O*-acetyl-D-xylopyranose under the conditions of interphase catalysis has afforded the corresponding acetylated glycosides. An alternative pathway of selenadiazole glycosides synthesis from semicarbazones of 1- β -*O*-(4-acetylphenyl)-2,3,4,6-tetra-*O*-acetyl-D-glucopyranose, -2,3,4,6-tetra-*O*-acetyl-D-galactopyranose, and -2,3,5-tri-*O*-acetyl-D-xylopyranose via oxidation with selenium dioxide has been elaborated.

Keywords: glycosylation, Könnigs–Knorr reaction, interphase catalysis, 1,2,3-thiadiazoles, semicarbazides, 1,2,3-selenadiazoles

DOI: [10.1134/S1070363219070089](https://doi.org/10.1134/S1070363219070089)