

Synthesis and Anticancer Evaluation of Some Phenothiazine Derivatives¹

A. H. Ahmed^a, A. Ebead^b, H. Afifi^c, and A. A.-H. Abdel-Rahman^{d*}

^a Chemistry Department, Faculty of Medicine, University of Science and Technology, Dhamar, Yemen

^b Chemistry Department, Faculty of Science, Arish University, Arish, Egypt

^c Faculty of Industrial Education, Beni Suef University, Beni Suef, Egypt

^d Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Kom, 32511 Egypt

*e-mail: adelnassar63@yahoo.com

Received September 12, 2018

Abstract—10*H*-Phenothiazine **1** reacts with 2-chloroacetonitrile to give 2-(10*H*-phenothiazin-10-yl)-acetonitrile **2**, which upon reaction with sodium azide gives the corresponding tetrazole **3**. Treatment of **2** by either hydrazine hydrate or hydroxylamine affords 2-(2-chloro-10*H*-phenothiazin-10-yl)acetimidohydrazide **4** and 2-(2-chloro-10*H*-phenothiazin-10-yl)-*N*¹-hydroxyacetimidamide **7**, respectively. Reaction of **4** with CS₂ leads to the thione derivative **5**. Treatment of **7** with acetic anhydride gives 3-[(2-chloro-10*H*-phenothiazin-10-yl)methyl]-4,5-dihydro-1,2,4-oxadiazole **8**. Alkylation of sodium salt of compounds **3**, **5**, **6**, or **8** by 1-chloro-2-methoxyethane and/or 2-(2-chloroethoxy)ethanol leads to the corresponding acyclic derivatives **9–16**. Structures of all newly synthesized compounds are confirmed by IR, NMR and mass spectroscopy. All of the synthesized compounds demonstrate high activity against breast cancer cell line (MCF7).

Keywords: phenothiazine, tetrazole, acyclic nucleosides, anticancer activity

DOI: 10.1134/S1070363218110269