

β -Hydroxyalkylation of Sterically Hindered Phenols with Epoxides in Acid Medium

A. P. Krysin, S. A. Amitina, T. G. Egorova, and V. G. Vasiliev

*Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences,
ul. Akademika Lavrent'eva 9, Novosibirsk, 630090 Russia
e-mail: vgvasil@nioch.nsc.ru*

Received March 11, 2010

Abstract—Reactions of 2,6-dialkylphenols with ethylene oxide, propylene oxide and epichlorohydrin in the presence of SnCl_4 at the temperature from -5 to $+5^\circ\text{C}$ leads to the formation of respective phenols containing a hydroxy group in the β -position of the aliphatic chain of the *para*-substituent. The conditions for maximum selectivity of the reaction of 2,6-di-*tert*-butylphenol with ethylene oxide were determined. By HPLC–MS method the directions of the side reactions were explored. The method has been successfully tested in a pilot installation. With 2,6-dimethylphenol instead of 2,6-di-*tert*-butylphenol a sharp increase occurs in the content of ethers in the reaction product. With epichlorohydrin, 2,6-di-*tert*-butylphenol affords a product, which is easily converted into an epoxide containing a sterically hindered phenol in its structure.

DOI: 10.1134/S1070363211020125