Hydrosilylation of Acetophenone with Diphenylsilane in the Presence of Rhodium(I) Complexes with Chiral Amines

V. M. Uvarov^a, D. A. de Vekki^a, V. P. Reshetilovskii^{a,b}, and N. K. Skvortsov^a

^a St. Petersburg State Technological Institute (Technical University), Moskovskii pr. 26, St. Petersburg, 190013 Russia fax: (+7812)3163144

^b Technical University of Dresden, Institute of Technical Chemistry, Dresden, Germany

Received July 28, 2009

Abstract—New chiral rhodium complexes cis-[Rh(CO)₂(RNH₂)Cl] [RNH₂ = (R)-(-)-cis-MyrtNH₂, (R)-(-)-MenthylNH₂, (R)-(+)-BornylNH₂] were synthesized and their catalytic properties in reactions of hydrosilylation of acetophenone with diphenylsilane were studied. It was shown that the reaction products were diphenyl-1-phenylethoxysilane, diphenyl-1-phenylvinyloxysilane and 1,1,3,3-tetraphenyldisiloxane. The best catalytic activity displayed (-)-cis-[Rh(CO)₂(MenthNH₂)Cl]. The hydrosilylation of acetophenone with diphenylsilane in the presence of [Rh(CO)₂(μ -Cl)]₂ and [Rh(cod)Cl]₂ and amines $in \ situ$ was studied. The best ratio amine:complex = 5:1 was established. With the catalytic systems based on [Rh(cod)Cl]₂ or [Rh(CO)₂(μ -Cl)]₂ the activity increased in the series of amines: (R)-(-)-cis-MyrtNH₂ < (R)-(-)-MenthylNH₂ ≈ (R)-(+)-BornylNH₂, and (R)-(-)-MenthylNH₂ ≈ (R)-(+)-BornylNH₂ (R)-(-)-cis-MyrtNH₂, respectively. The chemoselectivity maximum was observed in the presence of [Rh(cod)Cl]₂ with (R)-(-)-MenthylNH₂; maximum asymmetric induction was 43.5% ee at the use of [Rh(CO)₂(μ -Cl)]₂ and (R)-(+)-BornylNH₂; maximum asymmetric induction was 43.5% ee at the use of [Rh(CO)₂(μ -Cl)]₂ and (R)-(+)-BornylNH₂.

DOI: 10.1134/S107036321001007X