

Stable Synthetic Equivalents of *N*-Unsubstituted Imines:

Part 1. Synthesis

Yu. N. Firsova*, N. A. Lozinskaya, S. E. Sosonyuk, M. V. Proskurnina, and N. S. Zefirov

Department of Chemistry, Moscow State University, Moscow, 119991 Russia

*e-mail: yulia.firsova@gmail.com

Received July 18, 2011; in final form, September 27, 2011

Abstract—The key role of imines in organic synthesis, for example in the synthesis of amine derivatives and nitrogen heterocycles, is well known. However, the instability of *N*-unsubstituted imines is often an obstacle to the selection of synthesis strategy. Therefore, it is rather topical to design stable imines with a readily removable group at the nitrogen atom. The first part of this review deals with the methods of synthesis of *N*-sulfinyl imines (including chiral), *N*-sulfonyl imines, *N*-phosphinoyl imines, *N*-acylimines, *N*-silylimines, *N*-(hexopyranosyl)imines, *N*-benzylimines, *N*-(methoxyphenyl)imines, *N*-allylimines, 1,3,5-trisubstituted 2,4-diazapenta-1,4-dienes, and *N*-(1-hydroxyethyl-2,2,2-trichloro)imines and the methods for removing these protective groups.

Keywords: *N*-sulfinyl imines, *N*-sulfonyl imines, *N*-phosphoryl imines, *N*-acyl imines, *N*-silylimines, *N*-(hexopyranosyl)imines, *N*-benzylimines, *N*-(methoxyphenyl)imines, *N*-allylimines, 2,4-diazapenta-1,4-dienes, *N*-(1-hydroxyethyl-2,2,2-trichloro)imines, protective groups for imines, synthesis of imines.

DOI: 10.1134/S2079978012010037