Effect of Peripheral Benzodiazepine Receptor (PBR/TSPO) Ligands on Opening of Ca²⁺-Induced Pore and Phosphorylation of 3.5-kDa Polypeptide in Rat Brain Mitochondria

O. V. Krestinina¹, D. E. Grachev¹, I. V. Odinokova¹, G. Reiser², Yu. V. Evtodienko¹, and T. S. Azarashvili^{1*}

¹Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia; fax: (4967) 33-0553; E-mail: tazarash@rambler.ru

²Institute of Neurobiochemistry, Otto-von-Guericke University, Department of Medicine, 39120 Magdeburg, Germany; fax: (49391) 67-13097

Received November 1, 2007 Revision received May 8, 2008

Abstract—The effect of nanomolar concentrations of PBR/TSPO ligands—Ro 5-4864, PK11195, and PPIX—on Ca^{2^+} -induced permeability transition pore (PTP) opening in isolated rat brain mitochondria was investigated. PBR/TSPO agonist Ro 5-4864 (100 nM) and endogenous ligand PPIX (1 μ M) were shown to stimulate PTP opening, while antagonist PK11195 (100 nM) suppressed this process. Correlation between PBR ligand action on PTP opening and phosphorylation of a 3.5 kDa polypeptide was investigated. In intact brain mitochondria, incorporation of $[\gamma^{-32}P]$ ATP into 3.5 kDa peptide was decreased in the presence of Ro 5-4864 and PPIX and increased in the presence of PK11195. At threshold Ca^{2^+} concentrations leading to PTP opening, PBR/TSPO ligands were found to stimulate dephosphorylation of the 3.5-kDa peptide. Specific anti-PBR/TSPO antibody prevented both PTP opening and dephosphorylation of the 3.5-kDa peptide. The peptide was identified as subunit c of F_0F_1 -ATPase by Western blot using specific anti-subunit c antibody. The results suggest that subunit c of F_0F_1 -ATPase could be an additional target for PBR/TSPO ligands action, is subjected to Ca^{2^+} - and TSPO-dependent phosphorylation/dephosphorylation, and is involved in PTP operation in mitochondria.

DOI: 10.1134/S0006297909040105

Key words: brain mitochondria, peripheral benzodiazepine receptor, permeability transition pore, F_0F_1 -ATPase subunit c, PBR/TSPO